Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38400418

RESUMO

To understand human behavior, it is essential to study it in the context of natural movement in immersive, three-dimensional environments. Virtual reality (VR), with head-mounted displays, offers an unprecedented compromise between ecological validity and experimental control. However, such technological advancements mean that new data streams will become more widely available, and therefore, a need arises to standardize methodologies by which these streams are analyzed. One such data stream is that of head position and rotation tracking, now made easily available from head-mounted systems. The current study presents five candidate algorithms of varying complexity for classifying head movements. Each algorithm is compared against human rater classifications and graded based on the overall agreement as well as biases in metrics such as movement onset/offset time and movement amplitude. Finally, we conclude this article by offering recommendations for the best practices and considerations for VR researchers looking to incorporate head movement analysis in their future studies.


Assuntos
Óculos Inteligentes , Realidade Virtual , Humanos , Movimentos da Cabeça , Movimento , Algoritmos , Rotação
2.
J Neuroeng Rehabil ; 19(1): 53, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659259

RESUMO

OBJECTIVE: The objective of this study was to develop a portable and modular brain-computer interface (BCI) software platform independent of input and output devices. We implemented this platform in a case study of a subject with cervical spinal cord injury (C5 ASIA A). BACKGROUND: BCIs can restore independence for individuals with paralysis by using brain signals to control prosthetics or trigger functional electrical stimulation. Though several studies have successfully implemented this technology in the laboratory and the home, portability, device configuration, and caregiver setup remain challenges that limit deployment to the home environment. Portability is essential for transitioning BCI from the laboratory to the home. METHODS: The BCI platform implementation consisted of an Activa PC + S generator with two subdural four-contact electrodes implanted over the dominant left hand-arm region of the sensorimotor cortex, a minicomputer fixed to the back of the subject's wheelchair, a custom mobile phone application, and a mechanical glove as the end effector. To quantify the performance for this at-home implementation of the BCI, we quantified system setup time at home, chronic (14-month) decoding accuracy, hardware and software profiling, and Bluetooth communication latency between the App and the minicomputer. We created a dataset of motor-imagery labeled signals to train a binary motor imagery classifier on a remote computer for online, at-home use. RESULTS: Average bluetooth data transmission delay between the minicomputer and mobile App was 23 ± 0.014 ms. The average setup time for the subject's caregiver was 5.6 ± 0.83 min. The average times to acquire and decode neural signals and to send those decoded signals to the end-effector were respectively 404.1 ms and 1.02 ms. The 14-month median accuracy of the trained motor imagery classifier was 87.5 ± 4.71% without retraining. CONCLUSIONS: The study presents the feasibility of an at-home BCI system that subjects can seamlessly operate using a friendly mobile user interface, which does not require daily calibration nor the presence of a technical person for at-home setup. The study also describes the portability of the BCI system and the ability to plug-and-play multiple end effectors, providing the end-user the flexibility to choose the end effector to accomplish specific motor tasks for daily needs. Trial registration ClinicalTrials.gov: NCT02564419. First posted on 9/30/2015.


Assuntos
Interfaces Cérebro-Computador , Medula Cervical , Traumatismos da Medula Espinal , Eletroencefalografia , Mãos , Humanos , Imagens, Psicoterapia , Interface Usuário-Computador
3.
Front Hum Neurosci ; 16: 1077416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776220

RESUMO

Introduction: Most spinal cord injuries (SCI) result in lower extremities paralysis, thus diminishing ambulation. Using brain-computer interfaces (BCI), patients may regain leg control using neural signals that actuate assistive devices. Here, we present a case of a subject with cervical SCI with an implanted electrocorticography (ECoG) device and determined whether the system is capable of motor-imagery-initiated walking in an assistive ambulator. Methods: A 24-year-old male subject with cervical SCI (C5 ASIA A) was implanted before the study with an ECoG sensing device over the sensorimotor hand region of the brain. The subject used motor-imagery (MI) to train decoders to classify sensorimotor rhythms. Fifteen sessions of closed-loop trials followed in which the subject ambulated for one hour on a robotic-assisted weight-supported treadmill one to three times per week. We evaluated the stability of the best-performing decoder over time to initiate walking on the treadmill by decoding upper-limb (UL) MI. Results: An online bagged trees classifier performed best with an accuracy of 84.15% averaged across 9 weeks. Decoder accuracy remained stable following throughout closed-loop data collection. Discussion: These results demonstrate that decoding UL MI is a feasible control signal for use in lower-limb motor control. Invasive BCI systems designed for upper-extremity motor control can be extended for controlling systems beyond upper extremity control alone. Importantly, the decoders used were able to use the invasive signal over several weeks to accurately classify MI from the invasive signal. More work is needed to determine the long-term consequence between UL MI and the resulting lower-limb control.

4.
Brain Commun ; 3(4): fcab248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34870202

RESUMO

Loss of hand function after cervical spinal cord injury severely impairs functional independence. We describe a method for restoring volitional control of hand grasp in one 21-year-old male subject with complete cervical quadriplegia (C5 American Spinal Injury Association Impairment Scale A) using a portable fully implanted brain-computer interface within the home environment. The brain-computer interface consists of subdural surface electrodes placed over the dominant-hand motor cortex and connects to a transmitter implanted subcutaneously below the clavicle, which allows continuous reading of the electrocorticographic activity. Movement-intent was used to trigger functional electrical stimulation of the dominant hand during an initial 29-weeks laboratory study and subsequently via a mechanical hand orthosis during in-home use. Movement-intent information could be decoded consistently throughout the 29-weeks in-laboratory study with a mean accuracy of 89.0% (range 78-93.3%). Improvements were observed in both the speed and accuracy of various upper extremity tasks, including lifting small objects and transferring objects to specific targets. At-home decoding accuracy during open-loop trials reached an accuracy of 91.3% (range 80-98.95%) and an accuracy of 88.3% (range 77.6-95.5%) during closed-loop trials. Importantly, the temporal stability of both the functional outcomes and decoder metrics were not explored in this study. A fully implanted brain-computer interface can be safely used to reliably decode movement-intent from motor cortex, allowing for accurate volitional control of hand grasp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...